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OPTIMAL CONTROL PROBLEM DESCRIBING BY THE CAUCHY
PROBLEM FOR THE FIRST ORDER LINEAR HYPERBOLIC SYSTEM

WITH TWO INDEPENDENT VARIABLES

K.K. HASANOV1, T.S. TANRIVERDIYEV 1

Abstract. In the paper optimal control problems are considered, describing by the Cauchy

problem for the first order linear hyperbolic system with two independent variables and integral

quadratic functional. The existence and uniqueness theorems of the optimal control are proved.

Necessary and sufficient conditions of optimality are derived. Finding of the optimal control

and minimum of the functional is reduced to the solution of the non-linear system of integro-

differential equations.
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1. Introduction

Existence and uniqueness of the solution of the Cauchy problem in the class of analytical
functions when the Cauchy condition is given in the part of the domain non having any char-
acteristic direction, follows from Kovalevskiy’s theorem [5]. For the system of linear equations
with partial derivatives of the first order over two independent variables I.G. Petrovskiy [5] gave
a definition of hyperbolic system and proved a theorem on existence and uniqueness for the
Cauchy problem in the class of non-analytic functions. In this work and in [2] the solution of
Cauchy problem is given by means of characteristics. Further in [4] the existence of the con-
tinuous solution of the quazilinear hyperbolic system with two independent variables is proved.
A lot of work may be noted [1, 3, 6, 7], devoted to the optimization of the controlled objects
with distributed parameters, described by the first order hyperbolic systems. In those works
existence of the optimal control is proved and necessary conditions of optimality are derived.

2. Problem statement

Let the controlled process be described by the first order linear hyperbolic system with two
independent variables

zt = A (t, x) zx + B (t, x) z + C (t, x) u + f (t, x) , (1)

where A (t, x) , B (t, x) are n× n dimensional matrices, C (t, x) is n× r dimensional matrix, u is
r dimensional control, f (t, x) is n- dimensional vector function.

We assume that in the considered domain the system (1) is narrow hyperbolic in the sense of
Petrovskiy, i.e.

A (t, x) = diag (λ1 (t, x) , λ2 (t, x) , . . . , λn (t, x)) ,
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where λi (t, x) (i = 1, 2, . . . , n) are real functions of t, x.

Denote by x = α (t) and x = β (t), 0 ≤ t ≤ T (T > 0) solution of the problem

ẋ = λmin (t, x) , x (0) = 0,
ẋ = λmax (t, x) , x (0) = l (l > 0)

correspondingly, where

λmin (t, x) = min {λ1 (t, x) , λ2 (t, x) , . . . , λn (t, x)} ,

λmax (t, x) = max {λ1 (t, x) , λ2 (t, x) , . . . , λn (t, x)} ,

α (t) < β (t) , 0 ≤ t ≤ T.

Let the closed domain Ω̄ = {0 ≤ t ≤ T, α (t) ≤ x ≤ β (t)} belongs to the considered domain.
The Cauchy problem consists of finding the solution z (t, x) of the system (1) inside of Ω̄, that
satisfies to the condition

z (0, x) = ϕ (x) , 0 ≤ x ≤ l. (2)

Define by U∂ the set of admissible controls U∂ = {u (t) : u (t) ∈ Lr
2 (0, T )}.

On the set of solutions of the Cauchy problem (1)-(2) consider the problem of minimization
of the functional

J (u) =
∫∫

Ω

z′ (t, x) W (t, x) z (t, x) dxdt +

T∫

0

u′ (t) U (t) u (t) dt, (3)

where W (t, x) is n× n - dimensional symmetric, non-negative, continuous matrix, U (t)- n× r

dimensional symmetric, positively-defined continuous matrix, the sign (′) means transpose.

3. Existence of the solution for the Cauchy problem

Similarly to the [1, 10] may be proved.

Theorem 3.1. Let

(1) The matrix A (t, x) = diag (λ1 (t, x) , λ2 (t, x) , . . . , λn (t, x)) be continuous, has continu-
ous first derivatives;

(2) The matrices B (t, x) , C (t, x) and the vector f (t, x) be continuous;
(3) n dimensional function ϕ (x) be absolutely continuous.

Then for the fixed function u (t) ∈ U∂ there exists the unique absolutely continuous solution
z (t, x) of the Cauchy problem (1), (2).

Theorem 3.2. Let the conditions of the Theorem1 and condition imposed on the matrices
W (t, x) and U (t) be fulfilled. Then there exist the only optimal control for the problem (1)-(3).

Proof. Let the sequence {um (t)} of the admissible controls be minimizing for the problem (1)-
(3), i.e.

lim
m→∞J (u) = lim

m→∞





∫∫

Ω

z′m (t, x) W (t, x) zm (t, x) dxdt +

T∫

0

u′m (t) U (t) um (t) dt



 , (4)

where zm (t, x) is a solution of the Cauchy problem (1), (2) by control um (t).
Let’s fix arbitrary point (t, x) of the domain Ω. Define by li the part corresponding to the

characteristics Lifrom the point (t, x) till its intersection at the some point (0, xi) with the
interval (0, l) of the axis t = 0.
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Let x = xi (τ ; t, x) be an equation of the characteristics of Lipassing trough the point (t, x).
Similarly to [1] the Cauchy problem (1), (2) is equivalent to the system of integral equations,
i.e.

zi
m (t, x) = ϕi (xi (0; t, x)) +

t∫
0

[
Bi (τ, xi (τ ; t, x)) zm (τ, xi (τ ; t, x))+

+ Ci (τ, xi (τ ; t, x))um (τ) + f i (τ, xi (τ ; t, x))
]
dτ,

(5)

where by Bi (t, x) and Ci (t, x) are denoted i-th line of the matrices B (t, x), C (t, x) correspond-
ingly, and by f i (t, x) i-th coordinate of the function f (t, x).

Since the minimizing sequence {um (t)} is bounded in Lr
2 (0, T ), then from {um (t)} may

be chosen a sequence (we define it also by um (t)), which weakly converges to some function
u∗ (t) ∈ U∂ . Define by z∗ (t, x) a solution of the Cauchy problem (1), (2) by control u∗ (t):

z∗i
(t, x) = ϕi (xi (0; t, x)) +

t∫
0

[
Bi (τ, xi (τ ; t, x)) z∗ (τ, xi (τ ; t, x))+

+ Ci (τ, xi (τ ; t, x))u∗ (τ) + f i (τ, xi (τ ; t, x))
]
dτ.

(6)

Subtracting from (5) the integral identity (6) we get

zi
m (t, x)− z∗i

(t, x) =
t∫
0

Bi (τ, xi (τ ; t, x)) [zm (τ, xi (τ ; t, x))− z∗ (τ, xi (τ ; t, x))] dτ+

+
t∫
0

Ci (τ, xi (τ ; t, x)) [um (τ)− u∗ (τ)] dτ.

(7)

Let in the domain Ω̄ the inequality

‖B(t, x)‖ ≤ M

be true. Then from (7) one may obtain that

n∑
i=1

∣∣∣zi
m (t, x)− z∗i

(t, x)
∣∣∣ ≤ M

t∫
0

n∑
i=1

∣∣∣zi
m (τ, xi (τ ; t, x))− z∗i

(τ, xi (τ ; t, x))
∣∣∣ dτ+

+
n∑

i=1

∣∣∣∣
t∫
0

Ci (τ, xi (τ ; t, x)) [um (τ)− u∗ (τ)] dτ

∣∣∣∣ .

From this applying Gronwall’s inequality we have

n∑

i=1

∣∣∣zi
m (t, x)− z∗

i
(t, x)

∣∣∣ ≤ L
n∑

i=1

∣∣∣∣∣∣

t∫

0

Ci (τ, xi (τ ; t, x)) [um (τ)− u∗ (τ)] dτ

∣∣∣∣∣∣
.

Passing to limit by m → ∞ we got that the sequence {zm (t, x)} uniformly converges to the
function z∗ (t, x) , (t, x) ∈ Ω̄.

Note that the set U∂ is convex in Lr
2 (0, T ), the functional J (u) is lower semi-continuous on

U∂ . From this follows that the functional J (u) is weak lower semi-continuous on U∂ (see [8],
p.52).

Therefore from (4) we have

J (u∗) ≤ lim
m→∞J (um) =

∫∫

Ω

z∗
′
(t, x) W (t, x) z∗ (t, x) dxdt +

T∫

0

u∗
′
(t) U (t) u∗ (t) dt.

From this of follows that u∗ (t) is an optimal control and z∗ (t, x)- optimal trajectory.



K.K. HASANOV, T.S. TANRIVERDIYEV: OPTIMAL CONTROL PROBLEM ... 103

Now we prove the uniqueness of the optimal control. Let u∗ (t) and ū (t) be two different
optimal controls. Define by z∗ (t, x) and z̄ (t, x) the solutions of the Cauchy problem (1), (2) by
controls u∗ (t) and ū (t) correspondingly. Take

uλ (t) = λu∗ (t) + (1− λ) ū (t) , λ ∈ (0, 1) , t ∈ [0, T ] .

Then
zλ (t, x) = λz∗ (t, x) + (1− λ) z̄ (t, x) , (t, x) ∈ Ω,

where zλ (t, x) is a solution of the problem (1), (2) by uλ (t).
From the strong convexity of the functional (3) follows the validity of the inequality

J (uλ) = J (λu∗ + (1− λ) ū) < λJ (u∗) + (1− λ) J (ū) =

= λ inf
v∈U∂

J (v) + (1− λ) inf
v∈U∂

J (v) = inf
v∈U∂

J (v) .

From this one may derive that the functional (3) gets its minimal value by the control uλ (t).
But this is a contradiction, consequently the optimal control is unique. ¤

4. Necessary and sufficient optimality conditions

The adjoint state is defined as a solution of the following problem

Pt =
(
A′ (t, x) P

)
x
−B′ (t, x) P + W (t, x) z, (8)

P |Γ = 0, (9)

where by Γ is a part of the boundary of Ω consisting of the interval of the line t = T and curves
x = α (t) and x = β (t) , 0 ≤ t ≤ T .

Further is supposed that f (t, x) = 0.

Theorem 4.1. Let u∗ (t) be admissible control, z∗ (t, x)- solution of the Cauchy problem (1),
(2) by the control u∗ (t). The necessary and sufficient condition of optimality of the solution
u∗ (t) is existence of the solution of the problem

zt = A (t, x) zx + B (t, x) z + C (t, x)U−1 (t)

β(t)∫

α(t)

C ′ (t, s) P (t, s) ds, (10)

Pt = (A′ (t, x) P )x −B′ (t, x) P + W (t, x) z,

z (0, x) = ϕ (x) , x ∈ [0, l] , P |Γ = 0.
(11)

Then the unique optimal u∗ (t) of the problem (1)-(3) is defined by the relation

u∗ (t) = U−1 (t)

β(t)∫

α(t)

C ′ (t, x)P ∗ (t, x) dx, t ∈ [0, T ] . (12)

Proof. Let u∗ (t) be optimal control and z∗ (t, x) - solution of the Cauchy problem (1), (2) by
the control u∗ (t). For the function r (t) ∈ Lr

2 (0, T ),

uε (t) = u∗ (t) + εr (t) , 0 ≤ t ≤ T, ε ∈ R.

Define by zε (t, x) the solution of the problem (1), (2) by control uε (t). Then we get

zε (t, x) = z∗ (t, x) + εΦ(t, x) ,
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where Φ (t, x) is defined as a solution of the problem

Φt = A (t, x)Φx + B (t, x) Φ + C (t, x) r (t) , Φ(0, x) = 0. (13)

Now we calculate the influence of the perturbation on the functional

∆J (u∗) = J (uε)− J (u∗) =
∫∫
Ω

z′ε (t, x) W (t, x) zε (t, x) dxdt+

+
T∫
0

u′ε (t) U (t) uε (t) dt− ∫∫
Ω

z∗′ (t, x) W (t, x) z∗ (t, x) dxdt−
T∫
0

u∗′ (t) U (t) u∗ (t) dt+

+2ε
∫∫
Ω

P ′ (t, x) [Φt (t, x)−A (t, x)Φx (t, x)−B (t, x)Φ (t, x)− C (t, x) r (t)] dxdt.

Integrating by parts and considering the condition imposed on the function P (t, x) on the
boundary Γ of the domain Ω we have

∫∫
Ω

P ′ (t, x)Φt (t, x) dxdt = − ∫∫
Ω

P ′
t (t, x)Φ (t, x) dxdt,

∫∫
Ω

P ′ (t, x) A (t, x)Φx (t, x) dxdt = − ∫∫
Ω

(P ′ (t, x) A (t, x))x Φ(t, x) dxdt.

Considering these identies in the increment of the functional one may write

∆J (u∗) = 2ε
∫∫
Ω

{ [
z∗′ (t, x) W (t, x)− P ′

t (t, x) + (P ′ (t, x) A (t, x))x − P ′ (t, x) B (t, x)
]

Φ(t, x)−

−P ′ (t, x) C (t, x) r (t)} dxdt + 2ε
T∫
0

u∗′ (t) U (t) r (t) dt + η (ε) ,

where

η (ε) = ε2





∫∫

Ω

Φ′ (t, x)W (t, x)Φ (t, x) dxdt +

T∫

0

r′ (t) U (t) r (t)



 dt.

From this taking into account that P = P ∗ (t, x) is a solution of the equation (8) we get

∆J (u∗) = 2ε

T∫

0


u∗

′
(t, x) U (t)−

β(t)∫

α(t)

P ∗′ (t, s) C (t, s) ds


 r (t) dt + η (ε) . (14)

Solution of the problem (13) is equivalent to the following integral equation

Φi (t, x) =

t∫

0

[
Bi (τ, xi (τ ; t, x))Φ (τ, xi (τ ; t, x)) + Ci (τ, xi (τ ; t, x)) r (t)

]
dτ.

From this
n∑

i=1

∣∣Φi (t, x)
∣∣ ≤ M

t∫

0

n∑

i=1

∣∣Φi (τ, xi (τ ; t, x))
∣∣ dτ + L

t∫

0

|r (τ)| dτ. (15)

From (15) using the Gronwall’s inequality we obtain

|Φ(t, x)| ≤ K

t∫

0

|r (τ)| dτ.
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Then from the expression for η (ε) we obtain that η (ε) = o (ε). For the optimal control u∗ (t)
the relation

∆J (u∗) = 2ε

T∫

0





u∗
′
(t) U (t)−

β(t)∫

α(t)

P ∗′ (t, s) C (t, s) ds





r (t) dt + o (ε) ≥ 0

should be satisfied for any r (t).
Therefore the term o (ε) may be neglected. Since ε may be positive and also negative it is

true
T∫

0





u∗
′
(t) U (t)−

β(t)∫

α(t)

P ∗′ (t, s) C (t, s) ds





r (t) dt = 0.

As the function r (t) is arbitrary one from Lr
2 (0, T ) we have

u∗
′
(t) U (t)−

β(t)∫

α(t)

P ∗′ (t, s) C (t, s) ds = 0, [0, T ] .

From this we obtain the equality (12). Substituting (12) into (1) we obtain (10). Thus the
necessary condition is proved.

Now let z∗ (t, x) , P ∗ (t, x) be solutions of the problem (10), (11). Let’s prove that the function
u∗ (t) defined by the formula (12) is an optimal control for the problem (1)-(3). Let u (t) be any
admissible control, z (t, x)- solution of the problem (1)-(2) by this control.

Take
u (t) = u∗ (t) + r (t) , z (t, x) = z∗ (t, x) + Φ (t, x) ,

where Φ (t, x) is a solution of the problem (13).
Similarly to the obtaining of (14) we have

∆J (u∗) = 2

T∫

0





u∗
′
(t) U (t)−

β(t)∫

α(t)

P ∗′ (t, s) C (t, s) ds





r (t) dt + η,

where

η =
∫∫

Ω

Φ′ (t, x)W (t, x)Φ (t, x) dxdt +

T∫

0

r′ (t) U (t) r (t) dt.

Considering equality (12) and η ≥ 0, we obtain

∆J (u∗) ≥ 0.

It follows from the last that the control u∗ (t) defined (11) is optimal. ¤

The theorem is proved.

5. Non-linear integro-differential systems

Let n× n-matrix G (t, x, s) be in the domain a solution of the integro-differential equation
∂G
∂t = ∂

∂x (A′ (t, x) G) + ∂
∂s (GA (t, s))−B′ (t, x) G−GB (t, s)−

−
β(t)∫
α(t)

G (t, x, σ) Q (t, σ) G (t, σ, s) dσ + Φ̃ (x, s) W (t, s)
(16)
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Π = {0 < t < T, α(t) < x < β(t) , α(t) < s < β(t)} satisfying to the condition

G|S = 0, (17)

where

Q (t, σ) = C (t, σ) U−1 (t) dσ

β(t)∫

α(t)

C ′ (t, ξ) dξ, (18)

β(t)∫

α(t)

Φ̃ (t, s) W (t, s) z (t, s) ds = W (t, x) z (t, x) , (19)

S- surface of the domain Π excepting {t = 0, 0 ≤ x ≤ l, 0 ≤ s ≤ l}.
Theorem 5.1. Assume that G (t, x, s) is a solution of the problem (16), (17) and (u∗ (t) , z∗ (t, x))
is an optimal process for the problem (1)-(3). Then, the functional

P ∗ (t, x) =

β(t)∫

α(t)

G (t, x, s) z∗ (t, s) ds (20)

is a solution of the adjoint problem (8), (9), optimal control u∗ (t) is defined by (12) and minimal
value of the functional (3) is

J (u∗) = −
l∫

0

l∫

0

ϕ′ (x) G (0, x, s) ϕ (s) dxds. (21)

Proof. First we prove that the function P ∗ (t, x) defined by (20) is a solution of the adjoint
problem (8), (9). From (20) we obtain

P ∗
t (t, x) =

β(t)∫

α(t)

[Gt (t, x, s) z∗ (t, s) + G (t, x, s) z∗t (t, s)] ds, (22)

(
A′ (t, x) P ∗ (t, x)

)
x

=

β(t)∫

α(t)

(
A′ (t, x) G (t, x, s)

)
x
z∗ (t, s) ds. (23)

Substituting (20), (22), (23) into the equation (8) and considering that z∗ (t, x) satisfies to the
equation (10) we have

β(t)∫
α(t)

{Gt (t, x, s) z∗ (t, s) + G (t, x, s) [A (t, s) z∗s (t, s) + B (t, s) z∗ (t, s)+

+C (t, s) U−1 (t)
β(t)∫
α(t)

C ′ (t, ξ)

(
β(t)∫
α(t)

G (t, ξ, σ) z∗ (t, σ) dσ

)
dξ

]
−

− (A′ (t, x) G (t, x, s))x z∗ (t, s) + B′ (t, x)G (t, x, s) z∗ (t, s)−
− Φ̃ (x, s) W (t, s) z∗ (t, s)

}
ds = 0.

(24)

From this integrating by parts and considering the conditions (17) we obtain
β(t)∫

α(t)

G (t, x, s) A (t, s) z∗s (t, s) ds = −
β(t)∫

α(t)

(G (t, x, s) A (t, s))s z∗ (t, s) ds.
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Changing the integrating turn, we have

β(t)∫
α(t)

G (t, x, s)

[
β(t)∫
α(t)

C (t, s) U−1 (t) C ′ (t, ξ)

(
β(t)∫
α(t)

G (t, ξ, σ) z∗ (t, σ) dσ

)
dξ

]
ds =

=
β(t)∫
α(t)

{
β(t)∫
α(t)

G (t, x, σ) Q (t, σ)G (t, σ, s) dσ

}
z∗ (t, s) ds.

Taking into account these equations in (24) we get

β(t)∫
α(t)

{Gt (t, x, s)− (A′ (t, x)G (t, x, s))x − (G (t, x, s)A (t, s))s + B′ (t, x) G (t, x, s) +

+G (t, x, s) B (t, s) +
β(t)∫
α(t)

G (t, x, σ) Q (t, σ) G (t, σ, s) dσ − Φ̃ (x, s) W (t, s)

}
z∗ (t, s) ds = 0.

It is easy to get from this that the function P ∗ (t, x) defined by relation (20) is a solution of the
adjoint problem (8), (9).

Now we prove that the minimal value of the functional (3) is defined by (21).
For this purpose consider the function

g (t) =

β(t)∫

α(t)

β(t)∫

α(t)

z∗
′
(t, x) G (t, x, s) z∗ (t, s) dxds. (25)

Differenting this with respect to t and considering the condition (11) one may get

g′ (t) =
β(t)∫
α(t)

β(t)∫
α(t)

[
z∗′t (t, x) G (t, x, s) z∗ (t, s) + z∗′ (t, x) Gt (t, x, s) z∗ (t, s)+

+z∗′ (t, x) G (t, x, s) z∗t (t, s)
]
dxds.

Replacing here z∗ (t, x) and z∗ (t, s) by their expressions from the equations (1) and (10) respec-
tively, we obtain

g′ (t) =
β(t)∫
α(t)

β(t)∫
α(t)

{
[A (t, x) z∗x (t, x) + B (t, x) z∗ (t, x) + C (t, x) u∗ (t)]

′
G (t, x, s) z∗ (t, s)+

+z∗′ (t, x) Gt (t, x, s) z∗ (t, s) + z∗′ (t, x) G (t, x, s) [A (t, s) z∗s (t, s) + B (t, s) z∗ (t, s)+

+C (t, s) U−1 (t)
β(t)∫
α(t)

C ′ (t, ξ) P ∗ (t, ξ) dξ

}
dxds.

(26)

Integrating the last by parts and considering (17) we have

β(t)∫

α(t)

(A (t, x) z∗x (t, x))
′
G (t, x, s) z∗ (t, s) dx = −

β(t)∫

α(t)

z∗
′
(t, x)

(
A′ (t, x) G (t, x, s)

)
x
z∗ (t, s) dx,

β(t)∫

α(t)

z∗
′
(t, x) G (t, x, s) A (t, s) z∗s (t, s) ds = −

β(t)∫

α(t)

z∗
′
(t, x) (G (t, x, s)A (t, s))s z∗ (t, s) ds.
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Use of (18) and changing the integrating turn gives

β(t)∫
α(t)

β(t)∫
α(t)

z∗′ (t, x) G (t, x, s) C (t, s) U−1 (t)
β(t)∫
α(t)

C ′ (t, ξ)

(
β(t)∫
α(t)

G (t, ξ, σ) z∗ (t, σ) dσ

)
dξdxds =

=
β(t)∫
α(t)

β(t)∫
α(t)

z∗′ (t, x)

(
β(t)∫
α(t)

G (t, x, σ) Q (t, σ)G (t, σ, s) dσ

)
z∗ (t, s) dxds.

The obtained results we put into (26) and considering that G (t, x, s) is a solution of the problem
(16), (17) get

g′ (t) =
β(t)∫
α(t)

β(t)∫
α(t)

[
z∗′ (t, x) Φ̃ (x, s) W (t, s) z∗ (t, s)

(C (t, x) u∗ (t))′G (t, x, s) z∗ (t, s)
]
dxds.

(27)

According to (19) is obtained

β(t)∫

α(t)

β(t)∫

α(t)

z∗
′
(t, x) Φ̃ (x, s) W (t, s) z∗ (t, s) dxds =

β(t)∫

α(t)

z∗
′
(t, x) W (t, x) z∗ (t, x) dx. (28)

In (12) putting (20) instead of P ∗ (t, x) we have

U (t) u∗ (t) =
β(t)∫
α(t)

C ′ (t, x)

(
β(t)∫
α(t)

G (t, x, s) z∗ (t, s) ds

)
dx =

=
β(t)∫
α(t)

β(t)∫
α(t)

C ′ (t, x) G (t, x, s) z∗ (t, s) dxds.

(29)

Consideration of (28), (29) in (27) gives

g′ (t) =

β(t)∫

α(t)

z∗
′
(t, x) W (t, x) z∗ (t, x) dx + u∗

′
(t)U (t) u∗ (t) .

From this integrating with respect to t over [0, T ] we have

g (T )− g (0) =

T∫

0

β(t)∫

α(t)

z∗
′
(t, x) W (t, x) z∗ (t, x) dxdt +

T∫

0

u∗
′
(t) U (t) u∗ (t) dt = J (u∗) .

Then as follows from (17) G (T, x, s) = 0, 0 ≤ x, s ≤ l. Therefore from (25) we obtain that
g (T ) = 0 and

J (u∗) = −g (0) = −
l∫

0

l∫

0

ϕ′ (x) G (0, x, s) ϕ (s) dxds.

¤

Example. Distribution of plane waves is described by the system

∂y

∂t
+

1
ρ0

∂p

∂x
= u1,

∂p

∂t
ρ0c

2
0

∂y

∂x
= u2,

with conditions
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y(x, 0) = ϕ1(x) , p(x, 0) = ϕ2(x),

where y- speed of the disturbed environment, p- pressure environment, ρ0 and c0- density and
compressibility of environment correspondingly, u1, u2 - perturbation.

After some transformations the system assumes the form:

∂y1

∂t
+ c0

∂y1

∂x
= u1 +

1
ρ0c0

u2,

∂y2

∂t
− c0

∂y2

∂x
= u1 − 1

ρ0c0
u2 ,

with conditions

y1(x, 0) = ϕ1(x) +
1

ρ0c0
ϕ2(x)

y2(x, 0) = ϕ1(x) − 1
ρ0c0

ϕ2(x).

Let Ω is triangle with the basis[0, l], which is determined by the inequality t ≥ 0, x − c0t ≥
0, x + c0t ≤ l

On a set of solutions of the system we consider the minimization of the functional

J (u) =
∫∫

Ω

(
y2
1 + y2

2

)
dxdt +

l
2c0∫

0

(
u2

1 + u2
2

)
dt.

The adjoint problem has the following form:

∂z1

∂t
+ c0

∂z1

∂x
= y1,

∂z2

∂t
− c0

∂x2

∂x
= y2

with conditions

z1|Γ = 0, z2|Γ = 0,

where Γ is side of triangle of Ω.
Optimal control is defined by the following formula

u1 (t) =
∫ l−c0t

c0t
(z1 + z2) dx,

u2 (t) =
1

ρ0c0

∫ l−c0t

c0t
(z1 − z2) dx.
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